Original

Effects of Intake of Puffed wx ae Double Mutant Brown Rice on Human Blood Glucose and Lipid Levels

Shigeyo Horino,1,2 Makoto Nakaya,3 Aiko Shoji,3 Hiroaki Hirai,3 Shinich Kitamura,3 Akemi Kinoshita,1 and Shuichi Miyatani1

1Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, 3-7-30 Habikino, Habikino-shi 583-8555, Japan; 2Department of Development Nutrition, Faculty of Human Development, Soai University, 4-4-1 Nanko-naka Suminoe-ku, Osaka-shi 559-0033, Japan; 3Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakucho Naka-ku, Sakai-shi 599-8531, Japan.

Received 28 September 2011; accepted 11 November 2011

The amylopectin in waxy amylose-extender (wx ae) double mutant rice characteristically has a small number of branch chains and long side chains. In this study, we conducted single intake trials and middle term intervention trial to puffed non-glutinous Uruchi and wx ae brown rice. Postprandial blood glucose response to a single intake of puffed Uruchi and wx ae brown rice were measured with 3 men and 4 women (47.1 ± 12.7 years of age (mean ± standard deviation [SD])). Subjects who were fasted for 10 to 12 h, has ingested 20 g of the puffed sample. Incremental blood glucose levels of wx ae at 45 and 60 min (p < 0.01), and its peak (30 min) were much lower than for Uruchi. Middle term intervention trial had assigned 14 healthy men and women to eat either puffed brown rice of wx ae or Uruchi for 15 days to compare possible effects on blood glucose and serum lipid levels. Each group consumed 60 g of puffed brown rice a day, at any time of day, in addition to their ordinary meals. Those in the experimental diet (ED) group (4 men and 3 women; 45.1 ± 16.8 years of age) ate wx ae brown rice, while those in the control diet (CD) group (5 men and 2 women; 45.1 ± 15.1 years of age) ate Uruchi rice. Fasting blood samples were obtained before and after the experiment to examine and compare clinical chemical test values. The results showed that 1,5-anhydroglucitol (1,5-AG) declined significantly in the CD group and total cholesterol levels declined in the ED group, while triglyceride values rose in the CD group. Thus we expect that wx ae brown rice can be used as a functional food superior to Uruchi brown rice.

Key words: wx ae double mutant rice; resistant starch; blood glucose; serum lipid

1 Introduction

In recent years, lifestyle diseases have accounted for an increasing percentage of deaths. It is therefore important to improve the content of meals to prevent lifestyle-related diseases such as type 2 diabetes or dyslipidemia. Consequently, many attempts have been made to use the functionality of various foods, including functional rice.1–3

A Japonica rice (Oryza sativa) mutant, the waxy amylose-extender (wx ae) double mutant, produces a unique starch of pure amylopectin, with branched chains longer than those of normal rice amylopectin, the result of defective starch branching enzyme IIb and granule-bound starch synthase I.4 The wx ae starch shares a feature of resistant starch (RS) and represses increase of the post-prandial glucose level in mice.7 RS cannot be digested in the small intestine,9 and is effective against hypoglycaemia,7,8 hypocholesterolaemia,9,10 and fat accumulation.11

To make functional food part of the regular diet, we must think about how to cook it. We used puffed wx ae brown rice in this study because an elevated intake of milled rice seems to be associated with an increased risk of lifestyle-related diseases.9,10 While brown rice seems to decrease the risk of lifestyle-related diseases,14–16 We were able to give a roasted flavor to the wx ae rice and eliminate a smell of bran by puffing it.

Based on preliminary animal testing results, we planned a 15-day study using human subjects with the aim of verifying whether puffed wx ae brown rice inhibits postprandial blood glucose elevation and improves serum lipid levels.
2 Subjects and Methods

2.1 Materials

We used a waxy amylase-extender mutant line AMF18 which is a double-recessive mutant for waxy (wx) and amylase-extender (ae). It was derived from a cross between the EM21 and EM16 lines. The wx mutant line EM21 and the ae mutant line EM16 are genetically defective in granule bound starch synthase I and starch branching enzyme IIb, respectively. Those mutants were generated by treating fertilized egg cells of japonica rice (Oryza sativa) cv Kinmaze with N-methyl-N-nitrosourea. We used Uruchi rice cv Kinmaze as a control to measure postprandial blood glucose response to a single intake, and Uruchi rice cv Hinohikari as a control in a middle term intervention trial. Hinohikari and wx ae rice plants were grown in the summer of 2009 in Nara, Japan and Kinmaze rice plants were grown in the summer of 2007 in an experimental field at Osaka Prefecture University.

We puffed the rice using a puffing machine SL (Tachibana Kiko, Fukuoka, Japan). After puffing, the rice was kept dry until the intervention trial.

2.2 Puffed Uruchi and wx ae brown rice for trials

We measured the postprandial blood glucose response to a single intake of puffed Uruchi and wx ae brown rice. Seven healthy men and women (3 men and 4 women; 47.1 ± 12.7 years of age) who work at Osaka Prefecture University were recruited for single intake trials for puffed Uruchi and wx ae. Subjects fasted for 10-12 h before the trials, and then ingested 20 g of the puffed sample with 80 mL water. Blood samples were taken from the tip of the finger after 0, 15, 30, 45, 60 and 120 min. Blood glucose levels were determined by the glucose oxidase method using a NIPRO Freestyle Freedom blood glucose monitoring system (NIPRO Co., Osaka, Japan). The single intake trials of puffed Uruchi and wx ae were repeated with the same subjects a week later.

2.3 Middle term intervention trial with puffed rice

We recruited 14 healthy men and women (aged 20-68 years) comprising teachers, staff and students of Osaka Prefecture University.

The ED consisted of 60 g of puffed wx ae brown rice, while the CD comprised 60 g of puffed Uruchi. It is the maximum volume that we can intake without unreasonableness consecutively. The experiment was performed for 15 consecutive days in March 2010. The subjects were randomly assigned to either the CD (5 men and 2 women; 45.1 ± 15.1 years of age [mean ± SD]) or the ED (4 men and 3 women; 45.1 ± 16.8 years) group. They were asked to consume their quota of puffed rice at any time of the day in addition to their usual meals. The study was designed as a parallel group comparison.

Before the experiment, we investigated the normal dietary habits of the participants. During the experiment, we used diet records to examine the influence of the new diet on their meals. Calculations were made with Excel "Eiyokun" software Ver. 5.0 and Food Frequency Questionnaire (FFQg Ver. 2.0, Kenpakusha). We also recorded the amount and hardness of their stools, presence or absence of abdominal wind and status of other digestive organs. The amount of energy consumed was determined with a portable pedometer (PW-900, Yamasa Tokei Co., Ltd). To determine physical status, we measured the participants' weight and body fat percentage using the Body Planner DF-800 (Yamato-Scale Co., Ltd).

Fasting blood samples were obtained in the early morning before and after the experiment to determine levels of blood glucose, glycoalbumin and 1,5-AG. In addition, we measured levels of serum triglyceride, total cholesterol, high density lipoprotein (HDL) cholesterol and low density lipoprotein (LDL) cholesterol. LDL cholesterol concentrations were calculated with the Friedewald formula.

Informed consent was obtained from each of these subjects. The study was approved by the Research Ethics Review Committee of Osaka Prefecture University of Comprehensive Rehabilitation (approval number: 08-307, 2009-05) and conducted observing the terms set by the committee. Blood tests were performed in cooperation with the Houtokukai Medical Association Houwa Hospital.

Data were expressed as mean value ± SD. Statistical processing was performed with the Wilcoxon t-test within groups, while group comparisons were made with the Mann-Whitney U-test. We used Dr. SPSS II software (IBM) for the analyses. Data were considered significant when p < 0.05.

3 Results

Fig. 1 shows the subjects' postprandial incremental blood glucose response. Incremental blood glucose levels were lower after ingesting puffed wx ae brown rice (p < 0.01; 30, 45 and 60 min) than after ingesting puffed Uruchi. Blood glucose concentration at its peak (30 min) was much lower for wx ae than for Uruchi. Based on these results and given that puffed rice is an easy-to-eat food with a roasted flavor, we decided to conduct a middle term intervention trial using puffed Uruchi and wx ae brown rice.

Throughout the middle term intervention trial, both CD and ED groups showed no significant change in physical status, including weight, body fat percentage,
and the amount of energy intake and amount of energy consumed (Table 1). Also, no adverse events, including diarrhea, were reported during the period.

Table 2 indicates changes in clinical blood test values. In both groups, fasting blood glucose levels tended to decline slightly. Glycoalbumin did not fluctuate in either group before or after the experiment. A significant decline in 1,5-AG was observed in the CD group ($p = 0.040$).

Triglyceride levels were significantly elevated in the CD group ($p = 0.022$), while total cholesterol values declined significantly in the ED group ($p = 0.042$). HDL and LDL cholesterol concentrations tended to decrease in both CD and ED groups.

4 Discussion

Uruchi brown rice inhibits the postprandial incremental blood glucose response better than white rice does. Our results suggest that wx ae brown rice inhibits this response better still. We recruited subjects for middle term intervention trials for wx ae and puffed Uruchi. We measured the participants' body weight, body fat percentage, amount of energy intake, amount of energy consumed, blood glucose and serum lipid level.

No significant change was observed in the amount of

\[
\begin{pmatrix}
\text{CD group} & \text{ED group} \\
\hline
\text{Subjects} & \\
\text{Male} & 5 & \text{Female} & 2 & \text{Male} & 4 & \text{Female} & 3 \\
\text{Age (year)} & 45.1 \pm 5.1 & 45.1 \pm 6.8 \\
\text{Height (cm)} & 163.0 \pm 7.8 & 164.3 \pm 6.1 \\
\text{Weight (kg)} & 61.9 \pm 10.8 & 61.4 \pm 10.2 & 65.2 \pm 16.8 & 64.9 \pm 16.4 \\
\text{BMI (kg/m²)} & 22.3 \pm 2.5 & 21.9 \pm 3.2 & 23.2 \pm 2.0 & 22.3 \pm 4.4 \\
\text{Body fat (%)} & 22.9 \pm 4.3 & 21.9 \pm 6.2 & 27.8 \pm 5.7 & 27.4 \pm 5.7 \\
\text{Energy intake (kcal)} & 2009 \pm 362 & 2054 \pm 277 & 2022 \pm 236 & 2062 \pm 23 \\
\text{Energy consumed (kcal)} & 1891 \pm 374 & 1929 \pm 318 & 1925 \pm 508 & 1912 \pm 455 \\
\end{pmatrix}
\]

CD; control diet, ED; experimental diet, BMI; body mass index. Data are mean ± SD.

\[
\begin{pmatrix}
\text{CD group} & \text{ED group} \\
\hline
\text{Blood glucose (mg/dL)} & 96 \pm 8 & 92 \pm 8 & 88 \pm 7 & 87 \pm 5 \\
\text{Glycoalbumin (%)} & 12.7 \pm 0.7 & 12.7 \pm 0.7 & 12.9 \pm 0.6 & 12.9 \pm 0.6 \\
\text{1,5-AG (µg/mL)} & 24.4 \pm 8.1 & 24.8 \pm 6.7^* & 24.4 \pm 8.9 & 23.9 \pm 8.5 \\
\text{TG (mg/dL)} & 77 \pm 11 & 111 \pm 63.5^* & 83 \pm 39 & 91 \pm 46 \\
\text{TC (mg/dL)} & 207 \pm 31 & 197 \pm 31 & 204 \pm 46 & 191 \pm 44^* \\
\text{HDL-C (mg/dL)} & 62 \pm 13 & 58 \pm 11 & 65 \pm 20 & 62 \pm 17 \\
\text{LDL-C (mg/dL)} & 127 \pm 38 & 115 \pm 28 & 115 \pm 29 & 104 \pm 30 \\
\end{pmatrix}
\]

CD group (n = 7), ED group (n = 7); CD; control diet, ED; experimental diet. 1,5-AAG; 1,5-anhydroglucitol, TG; triglyceride, TC; total cholesterol, HDL-C; high density lipoprotein cholesterol, LDL-C; low density lipoprotein cholesterol. *Significant difference between the day 0 and day 16 within the same group was analyzed by Wilcoxon t-test at $p < 0.05$. Data are mean ± SD.
energy intake or amount of energy consumed in either group. We concluded that these factors did not influence blood test results.

1,5-AG is the most abundant sugar in healthy human blood after glucose. It is contained in a wide variety of foods, but only in minute amounts. Normally, it is reabsorbed into the kidney after excretion. If its blood concentration exceeds the threshold value of renal excretion, renal reabsorption is inhibited, 1,5-AG is discharged into the urine and its blood concentration declines, which serves as an indicator of hyperglycemia after meals. The 1,5-AG concentration value is used mainly for improving high blood sugar after meals or for determining the beneficial effects of diet or exercise therapy.

Recently, 1,5-AG has been introduced into the guidelines on the management of postprandial hyperglycemia implemented by the International Diabetes Federation (IDF). In our study, the 1,5-AG levels of the subjects were all 14 μg/mL or above, falling within the normal range. A significant decrease was observed in the CD group from Day 0 through Day 16. This can probably be explained by leakage of sugars into urine due to transient hyperglycemia after meals. This phenomenon was not observed in the ED group.

Diagnostic criteria for metabolic syndrome include triglycerides at 150 mg/dL or above and HDL cholesterol at less than 40 mg/dL. It is essential to maintain normal serum lipid levels to stay healthy. In our experiment, the CD subjects showed negative effects, including decreased HDL cholesterol and elevated triglyceride levels. Ueno et al. reported that total cholesterol and LDL cholesterol dropped in subjects who consumed unpolished brown rice for a month, and dietary fiber improves serum cholesterol levels. In our study, total cholesterol levels decreased significantly in the ED group, which is consistent with these results. Lowered total cholesterol in the ED group may be explained by the fact that wx ae brown rice contains as much as four times the dietary fiber of Uruchi brown rice.

Triglyceride synthesis increases after carbohydrate-rich meals, because such foods provide sufficient levels of acetyl-CoA, a component of fatty acid synthesis, and nicotinamide adenine dinucleotide phosphate (NADP), a coenzyme necessary for the synthetic reaction. High-carbohydrate consumption is associated with hypertriglyceridemia. Suzuki et al. divided subjects into two groups and asked them to eat either Uruchi white rice or brown rice. Both groups consumed a large amount (50 g/day) of sugar. As a result, the white rice group showed higher elevation of triglycerides and cholesterol than the brown rice group. Similarly, triglyceride levels increased significantly in the CD group in our study. This was presumably because Uruchi rice starch was quickly digested and absorbed into sugars, resulting in synthesis of triglycerides in the liver. In contrast, probably because wx ae rice starch, rich in RS, is digested slowly and less is absorbed, triglyceride levels did not increase in the ED group in our study.

5 Conclusion

We reconfirm that puffed wx ae brown rice improves both carbohydrate and lipid metabolism more effectively than puffed Uruchi brown rice in middle term intervention trial. Our results suggest that puffed wx ae brown rice has a different functionality from that of Uruchi, and wx ae may be useful as a new dietary ingredient for preventing lifestyle-related diseases. Now we plan to do a long-term crossover study.

Acknowledgements

We are deeply grateful to the volunteers who agreed to participate in this study. We thank Dr. Hikaru Satoh at Kyusyu University for providing rice seeds.

This study was partly supported by the Iijima Memorial Foundation for the Promotion of Food Science and Technology as part of its academic research funding in 2008 and a grant of Ministry of Agriculture, Forestry and Fisheries of Japan.

References

6 Englyst HN, Macfarlane GT (1986) Breakdown of